Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse.
نویسندگان
چکیده
AIMS The aim of this animal study is to assess fasting-induced changes in myocardial substrate metabolism and energy status as a consequence of mitochondrial long-chain fatty acid β-oxidation deficiency, using magnetic resonance spectroscopy (MRS). METHODS AND RESULTS Carbon-13 ((13)C) MRS of hyperpolarized [1-(13)C]pyruvate was used to assess in vivo pyruvate dehydrogenase (PDH) activity in fed and fasted wild-type (WT) mice and long-chain acyl-CoA dehydrogenase knockout (LCAD KO) mice. PDH activity decreased after fasting in both genotypes, but was 2.7-fold higher in fasted LCAD KO mice compared with fasted WT mice. Incorporation of the (13)C label into the myocardial malate and aspartate pools in fasted LCAD KO mice demonstrates enhanced activity of anaplerotic pathways in fasted LCAD KO hearts. These findings were corroborated by ex vivo assays revealing partially depleted pools of citric acid cycle intermediates in fasted LCAD KO myocardium, suggesting an increased, but unmet need for anaplerosis. The in vivo myocardial energy status, assessed using phosphorous-31 ((31)P) MRS, was lower in fasted LCAD KO mice than in fasted WT mice. CONCLUSION This study revealed that the heart of fasted LCAD KO mice has an elevated reliance on glucose oxidation, in combination with an unmet demand for myocardial anaplerosis. Due to a lack of substrate availability, the sustained myocardial glucose uptake and PDH activity in LCAD KO mice are ineffective to maintain metabolic homeostasis during fasting, which is reflected by an impaired myocardial energy status in fasted LCAD KO mice.
منابع مشابه
Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function.
BACKGROUND Lipotoxicity may be a key contributor to the pathogenesis of cardiac abnormalities in mitochondrial long-chain fatty acid β-oxidation (FAO) disorders. Few data are available on myocardial lipid levels and cardiac performance in FAO deficiencies. The purpose of this animal study is to assess fasting-induced changes in cardiac morphology, function, and triglyceride (TG) storage as a co...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملFasting induces prominent proteomic changes in liver in very long chain Acyl-CoA dehydrogenase deficient mice
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a clinically heterogeneous disorder of mitochondrial fatty acid β-oxidation usually identified through newborn screening. Genotype-phenotype correlations have been defined, but considerable clinical heterogeneity still exists. Symptoms are often induced by physiological stress such as fasting or intercurrent illness, setting ...
متن کاملSIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase
SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the ac...
متن کاملTreatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride.
The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2013